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Abstract 

In this project, we will try to see whether we can predict recipe 

ratings based on features like ingredients used, cooking directions, 

and flavor composition by analyzing a dataset of over 20,000 

cooking recipes. Our methods will be tested by applying several 

algorithms, including SVMs, Adaboost, and Neural Networks. We 

will also explore the question of whether or not we can learn to 

rank recipes—if we can determine if recipe A will be better than 

recipe B by using similar methods as in the classification case.   

 

 

1 Introduction 

 

Finding cooking recipes has never been easier. We all have almost instant access to hundreds of 

thousands of recipes, whether they be online or in print. However, finding good recipes is bit 

more difficult. After all, the only guaranteed way to tell whether a recipe is good  is to make it 

yourself. As a result, we would like to tackle the problem of telling how good a recipe is without 

cooking it.  

 

Broadly speaking, we will try to determine the quality of a recipe by predicting its rating. Due to 

the constraints imposed by our dataset, we will run experiments in a two, three, and four class 

setup by combining lower rated recipes. For each of these scenarios, we’ll also compare the 

effectiveness of various methods of featurizing recipes. We will first consider  basic methods for 

featurization (e.g. based on the presence or absence of certain ingredients). Gradually, we’ll 

work our way to the other side of the spectrum, trying more complex methods that take into 

account the flavor profile, preparation, amount, and overarching category of each ingredient. To 

determine which methods and features work best, our experimental setups will be tested using 

several classifiers we covered in class, namely SVMs and Adaboost, as well as with Neural 

Networks.  

 

In addition to the multi-class classification setting, predicting recipe ratings naturally leads us 

towards the question of ranking recipes. In this case, we will try to see whether it is possible to 

learn if recipe A is better than or equally as good as recipe B. Again, we’ll consider the same 

featurization methods as in the classification case, however, our ranking setup will use Adaboost 

and SVMs to test our various features and models.  



 

 

This report is structured as follows: we will first take look at our dataset, break down our various 

methods of featurization, outline our goals, present our data and findings, analyze our results, 

and finally suggest additional work that could be done with regard to recipe classification and 

ranking. 

 

2 How to Predict Recipe Ratings 

2.1 Dataset and Featurization 

 

Currently, most recipe APIs don’t contain the full spectrum of information needed for our 

purposes. Some datasets don’t contain ratings, while others don’t include cooking directions. 

After a few failed attempts at web scraping, we found a packaged JSON of over 20,000 recipes 

online from Kaggle[1]. We’re unsure of who compiled this dataset, as it is available from other 

sites as well, but the source of the original recipes is Epicurious.com[2]. With the dataset in hand, 

we then excluded recipes that we could not gather pertinent information from (e.g., some recipes 

were comprised solely of non-food ingredients, giving us a feature vector with all zeros, and 

some recipes had a “null” rating). This had little effect on the size of the dataset, reducing it from 

20110 to 20035 workable data points. 

 

Rounding ratings to the nearest whole number, the breakdown of ratings in our original dataset is 

as follows: 

 

● 0 ratings: 1834 (9.43%) 

● 1 ratings: 162 (0.85%) 

● 2 ratings: 124 (0.65%) 

● 3 ratings: 2011 (9.84%) 

● 4 ratings: 13194 (65.50%) 

● 5 ratings: 2710 (13.73%)  

● Total recipes: 20035 

 

This distribution is quite problematic for machine learning for two reasons: 

1. It’s highly skewed towards the upper echelon of ratings, which preliminary tests with 

SVM showed that this would cause most “predictions” to be merely guessing the same 

class (in this case, 4 ratings). 

2. It’s almost completely absent of 1 and 2 ratings, making it more difficult to accurately fit 

a model that would correctly classify these points. 

 

In order to fix these issues, we decided on a broader 4-class classification model where we would 

push 0 and 1 ratings up to 2, based on the assumption that recipes rated 0, 1, and 2, are all 

similarly distasteful. Doing this gives us the following data distribution: 



 

 

● 0, 1, 2 ratings: 2120 (10.93%) 

● 3 ratings: 2011 (9.84%) 

● 4 ratings: 13194 (65.50%) 

● 5 ratings: 2710 (13.73%)  

● Total recipes: 20035 

 

Each recipe in the dataset includes fields like: 

 

1. Cooking Instructions 

2. Ingredients 

3. Rating/5 stars (note that Epicurious has since switched to a 4 star rating system) 

4. Title 

5. Nutritional Information 

6. Categories/Keywords 

 

For this project, we primarily concerned ourselves with cooking instructions, ingredients, and the 

rating of each recipe. In order to create our feature vectors, we experimented with a couple 

methods of featurization,  summarized below. Generally, our feature vectors varied based on 

how we decided to split up ingredients, our methods of counting them, and whether or not we 

decided to include cooking directions. 

 

From the ingredients list of a recipe, we first wrote scripts that isolated the main ingredient and 

reduced them to their main nouns. For example, phrases like “extra virgin olive oil” would be 

reduced to just “olive oil”. This gave us a list of all ingredients, from which we would create a 

broad featurization method: ALL. To make sure this list is complete, we created a script that 

would scan through every ingredient, and see if it could be reduced to one of the main 

ingredients previously seen. If not, it would print out this new ingredient and we would manually 

add it into the list. While adding the main ingredients to the list, we also created rough categories 

for each of them (vegetables, meats, alcohols, etc.), in order to make it easier for us to sort them 

into ~70 categories, as well as giving us an easy way to categorize all the alcohols together 

without a second round of searching. Grouping alcohols (as many would have brand names and 

not be easily discernible as alcohol), singular and plural forms of ingredients, and regional 

variations of each ingredient, led us create a SPARSE vector creation method. From this, we 

moved on to create the ~70 buckets that we’ll refer to as GROUPED, by researching each of the 

non alcoholic ingredients, and sorting them into buckets based on their flavor and texture.  

 

We used similar approaches in creating methods WEIGHTS and DIRECTIONS: heuristical 

groupings based on the assumption that more data would lead to more accurate predictions. 

These two methods are more complex than EXISTENCE, which is the most simple, a binary 



 

label denoting the presence or absence of an ingredient or category of ingredient. To extract 

WEIGHTS, we created conversion tables for volumes and weights. Going through the list of 

ingredients again, we did pattern matching on the substring leading up to the main ingredient 

noun, in order to isolate the volume or weight quantity required by the recipe (for example, “3 

tablespoons”). Having those, we mapped all weights to grams, and for volumes we mapped all 

conversions in terms of metric US cups, then manually created another mapping to map US cups 

into grams. For most categories we could simply map the density of the category, because most 

ingredients in certain categories would share very similar densities, but for more complex ones 

showing significant variance, we would create a specific mapping for them. This is one of our 

most complex featurization models, that was made to distinguish between very similar recipes by 

taking into account errors that could arise due to misuse/overuse of ingredients. The way we 

extracted DIRECTIONS was similar. We again used pattern matching to detect the existence of 

certain keywords in a recipe’s cooking instructions, for example “bake” or “sauté”. We also 

implemented an intermediate step between EXISTENCE and WEIGHTS which we named 

FREQUENCY. Here, the values of the vectors are determined by how many times we run into an 

ingredient of a certain category (categories being those of GROUPED), based on the assumption 

that not only does a recipe depend on the types and flavor of the ingredients used in it, but also 

how much of each type or flavor. 

 

2.2 Our Goals  

 

Our work aims to use machine learning to answer one fundamental question and explore other 

possible applications of our results: can we objectively look at a recipe, and its details like 

ingredients and directions, to try to determine its quality? If this is indeed possible, then we 

should also be able to rank recipes against each other and analyze flavor trends. We assume there 

is a correlation between the texture and flavor diversity of foods and their ratings, but this is 

difficult to confirm because of the subjective nature of ratings. For example, only those with 

semi-strong opinions or those who are outspoken tend to rate a recipe, not to mention the 

possible variability in their responses due to personal preferences with regard to cuisine styles. 

Should this experiment bear fruit, we could infer that there may be common combinations of 

flavors that are generally appealing to the average palate, which may be used in other areas such 

as studying the evolution of taste within cultures. The way we decided to split our data and 

generate our classifications reflects these ideas. 

 

In order to approach these questions, we decided on the following setup for our experiments: 

 

● The labels in the data are still very skewed towards high ratings, so we trained classifiers 

on undersampled data so that the distribution across the board was equal. The distribution 

of our test data was made to be equal as well. Note that the training and test points were 

chosen randomly across every experiment we ran.  



 

● In addition to undersampling, we also looked at results obtained from combining low 

ratings into one larger class, resulting in two, three, and four class classification 

scenarios. Specifically, for the two class case we had buckets containing {0, 1, 2, 3} and 

{4, 5} ratings (good and bad recipes). For the three class case we had buckets containing 

{0, 1, 2, 3}, {4}, and {5} star ratings (bad, average, and good recipes). Finally, for the 4 

class case we had buckets containing {0, 1, 2}, {3}, {4}, and {5} star ratings.  

 

For featurization, we decided on the following methods: 

 

1. Ingredient Grouping 

a. ALL: ~800 features, each corresponding to a unique ingredient string 

b. SPARSE: ~600 features, each corresponding to a unique ingredient, here we 

grouped singular and plural forms together, and we grouped all alcoholic 

beverages together 

c. GROUPED: ~70 features, each corresponding to a group of ingredients that all 

have similar flavors (sweet, savory, bitter, etc.) and textures  

2. Value of Feature 

a. EXISTENCE: Binary numbering (0-1) representing the presence of a given 

feature column (i.e. ingredient or ingredient category) 

b. FREQUENCY: Counter representing how many many times an ingredient falls 

within one of the ~70 GROUPED categories 

c. WEIGHTS: Floating point number representing the percentage of the mass in 

grams of the ingredient or ingredient group 

3. Cooking Directions 

a. DIRECTIONS: ~20 features, each corresponding to a unique preparation (e.g. 

sauté, boil, bake, roast), also features for cooking times and oven temperatures 

 

We ran our experiments using SVM, Adaboost, and Neural Networks. SVM was run using a 

polynomial kernel and with parameters C and d obtained from running grid search, using 10-fold 

cross-validation. Adaboost was run using decision stumps as our base classifier with the number 

of iterations obtained using grid search, again using 10-fold cross-validation. We included 

Neural Networks to see if deep learning would yield significantly different results, which were 

obtained by finding an optimal value for the number of neurons in one or two hidden layers. Our 

Neural Networks used a DNN-Classifier with an Adagrad gradient optimiser. In the ranking 

case, we tested ranking using Adaboost and SVM in a similar setup as in the case of 

classification, with labels -1, 0, and 1 denoting if recipe A is worse than, equal to, or better than 

recipe B, respectively. 

 

3 Results and Analysis 

 



 

The results of our experiments on the four, three, and two-class classification problems can be 

found in figures 1, 2, and 3, respectively. The results of our experiments on the ranking problem 

can be found in figure 4. Our test accuracy was calculated using the 0-1 loss function. This 

metric is pretty harsh for multiclass classification, so we also calculated a closeness score—the 

average classification error—detailing how many classes off our prediction was from the actual 

ratings. The average classification error we obtained across all of our test runs was about 1 or 

less, meaning that our model would either predict a 2 or a 4 for a 3 starred recipe. 

 

4 Class Classification Feature Vector Details Test Accuracy (%) 

SVM GROUPED EXISTENCE DIRECTIONS 38.09 

 GROUPED EXISTENCE 40.95 

 GROUPED FREQUENCY DIRECTIONS 39.00 

 GROUPED FREQUENCY 39.65 

 SPARSE EXISTENCE DIRECTIONS 40.77 

 SPARSE EXISTENCE 38.76 

 SPARSE WEIGHTS DIRECTIONS 33.21 

 SPARSE WEIGHTS 23.58 

 ALL EXISTENCE 38.26 

Adaboost GROUPED EXISTENCE DIRECTIONS 40.60 

 GROUPED EXISTENCE 33.22 

 SPARSE EXISTENCE 35.07 

 ALL EXISTENCE 34.23 

Neural Networks GROUPED EXISTENCE DIRECTIONS 39.50 

 GROUPED EXISTENCE 38.50 

 GROUPED WEIGHTS DIRECTIONS 41.63 

 GROUPED WEIGHTS 37.10 

(Figure 1: 4-Class Experimental Results) 

 

In the 4-class scenario, we saw that we were beating the distribution of the test set by at most 

16% (since our distribution was an even 25% split). We obtained our best SVM results using 

GROUPED EXISTENCE (40.95% accuracy), and our best Adaboost results were comparable, 



 

using GROUPED EXISTENCE DIRECTIONS (40.60% accuracy). Although never covered in 

class, we included Neural Networks and we were pleasantly surprised to see it perform as well as 

SVMs and Adaboost (41.63% accuracy using GROUPED WEIGHTS DIRECTIONS).  

 

We initially included cooking directions thinking that it would lead to comparable, if not better, 

results. For the 4-class scenario, this held to be true. GROUPED EXISTENCE DIRECTIONS 

performed relatively as well as just GROUPED EXISTENCE, for example. In certain cases, for 

example with SPARSE WEIGHTS DIRECTIONS versus just SPARSE WEIGHTS, we saw 

that the addition of directions lead to significantly better test accuracy. Another interesting result 

that we noticed was that using WEIGHTS lead to significantly worse test accuracy compared to 

just using EXISTENCE. Initially we thought that WEIGHTS would lead to better accuracy, for 

example, just using sugar versus using a pound of sugar should play a factor in the rating of a 

recipe. Finally, we noticed was that using FREQUENCY did not significantly improve or worsen 

test accuracy compared to just using EXISTENCE. Initially we thought that FREQUENCY 

would lead to better accuracy, as logically, the amount of times a type of ingredient was used 

should impact the quality of a recipe. 

 

Comparing the performance of GROUPED vs. SPARSE vs. ALL, we did see not see any 

noticeable differences in test accuracy. This is surprising, especially for GROUPED vs. SPARSE 

and GROUPED vs. ALL cases as we initially thought that grouping ingredients of similar flavor 

and texture would lead to more accurate results. 

 

3 Class Classification Feature Vector Details Test Accuracy 

SVM GROUPED EXISTENCE DIRECTIONS 43.66 

 GROUPED EXISTENCE 42.40 

 GROUPED FREQUENCY DIRECTIONS 44.93 

 GROUPED FREQUENCY 45.43 

 SPARSE EXISTENCE DIRECTIONS 50.61 

 SPARSE EXISTENCE 52.56 

 SPARSE WEIGHTS DIRECTIONS 40.85 

 SPARSE WEIGHTS 30.61 

 ALL EXISTENCE 49.76 

Adaboost GROUPED EXISTENCE DIRECTIONS 42.68 

 GROUPED EXISTENCE 43.78 



 

 SPARSE EXISTENCE 44.63 

 ALL EXISTENCE 44.51 

Neural Networks GROUPED EXISTENCE DIRECTIONS 46.00 

 GROUPED EXISTENCE 42.93 

 GROUPED WEIGHTS DIRECTIONS 40.27 

 GROUPED WEIGHTS 40.13 

(Figure 2: 3-Class Experimental Results) 

 

In the 3-class scenario we again saw many of same trends as we saw in the 4-class scenario. We 

were again beating the distribution by at most 19%. Again, we noticed that the addition of 

DIRECTIONS led to comparable, if not better, results. Once again, we saw that using WEIGHTS 

led to comparable if not significantly worse test accuracy compared to just using EXISTENCE. 

Similar results held true for FREQUENCY versus just EXISTENCE, as it resulted in no 

significant change in test accuracy. In this experiment, we obtained our best SVM results using 

SPARSE EXISTENCE (52.56% accuracy), our best Adaboost results were obtained by using 

SPARSE EXISTENCE (44.63% accuracy), and our best Neural Network results were obtained 

using GROUPED EXISTENCE DIRECTIONS (46.00%). Comparing the performance of 

GROUPED vs. SPARSE vs. ALL, in the 3-class case we saw a noticeably worse test accuracy 

using GROUPED. This is surprising, as we initially thought that grouping ingredients of similar 

flavor and texture would lead to at least comparable, if not better, results. 

 

2 Class Classification Feature Vector Details Test Accuracy 

SVM GROUPED EXISTENCE DIRECTIONS 60.14 

 GROUPED EXISTENCE 59.62 

 GROUPED FREQUENCY DIRECTIONS 59.88 

 GROUPED FREQUENCY 60.38 

 SPARSE EXISTENCE DIRECTIONS 65.43 

 SPARSE EXISTENCE 63.27 

 SPARSE WEIGHTS DIRECTIONS 58.10 

 SPARSE WEIGHTS 49.22 

 ALL EXISTENCE 64.83 

Adaboost GROUPED EXISTENCE DIRECTIONS 62.18 



 

 GROUPED EXISTENCE 62.55 

 SPARSE EXISTENCE 61.70 

 ALL EXISTENCE 61.94 

Neural Networks GROUPED EXISTENCE DIRECTIONS 58.51 

 GROUPED EXISTENCE 57.64 

 GROUPED WEIGHTS DIRECTIONS 57.42 

 GROUPED WEIGHTS 59.72 

(Figure 3: 2-Class Experimental Results) 

 

In the 2-class scenario, we again saw similar trends as in the 3 and 4 class scenarios. Again, we 

ended up only beating the distribution by at most 15%. In this setting, our best SVM accuracy 

was obtained using SPARSE EXISTENCE DIRECTIONS (65.43%), our best Adaboost 

accuracy was obtained using GROUPED EXISTENCE (62.18%), and our best Neural Network 

accuracy was obtained using GROUPED WEIGHTS (59.72%). Comparing the performance of 

GROUPED vs. SPARSE vs. ALL, as in the 4-class scenario we did see not see any noticeable 

differences in test accuracy. 

 

Ranking Feature Vector Details Test Accuracy 

SVM GROUPED EXISTENCE 42.24 

 GROUPED EXISTENCE DIRECTIONS 42.80 

Adaboost GROUPED EXISTENCE DIRECTIONS 44.39 

 GROUPED EXISTENCE 43.50 

 GROUPED FREQUENCY 42.54 

 GROUPED WEIGHTS 41.77 

 SPARSE EXISTENCE 45.77 

 ALL EXISTENCE 46.47 

(Figure 4: Ranking Experimental Results) 

 

Finally, in the ranking case, SVMs and Adaboost performed roughly 10% better than just 

randomly assigning -1, 0, 1 labels to test points. As we saw in the classification scenarios, the 

inclusion of DIRECTIONS led to comparable or even better test accuracy. On the other hand, 

the inclusion of WEIGHTS instead of EXISTENCE led to comparable or worse test accuracy. 

Furthermore, the use of FREQUENCY instead of EXISTENCE resulted in no significant change 



 

in test accuracy. Comparing the performance of GROUPED vs. SPARSE vs. ALL, again, we did 

see not see any noticeable increase or decrease in test accuracy. 

 

4 Discussion and Related Work 

 

As predicted, across the board we saw that including DIRECTIONS led to better results.  

However, to our surprise, using WEIGHTS instead of EXISTENCE led to only comparable, if not 

worse results. Finally, using FREQUENCY instead of EXISTENCE resulted in no significant 

differences. Our most surprising results were obtained when GROUPED, SPARSE, and ALL 

were compared. Switching between these three methods did not lead to any noticeable increase 

or decrease in test accuracy across all experiments. If anything, using GROUPED led to worse 

test accuracy. Furthermore, no matter if we used SVMs or Adaboost or Neural Networks, we 

were able to predict ratings better than guessing a random class, but our results were not accurate 

enough to classify this rating problem as definitely learnable. The same can be said for ranking 

recipes. 

 

We’ll now compare our results to other work in recipe classification. The most relevant work we 

could find was conducted by Yu, Zhekova, Liu, and Kubler[3] in which they used a similar 

dataset to predict recipes on a 1-4 rating scale using SVMs. In their experiments, they found that 

the best predictions were obtained by incorporating actual reviews into their training and test 

sets. Our dataset did not include such information, furthermore we didn’t think that reviews 

should be included to begin with. After all, the content and wording of each review directly 

corresponds to the rating of a recipe. For example, a review that says something along the lines 

of “That cake was so good” alludes to higher rating. While this previous work had a reported 

accuracy of ~62%, it is also worth noting that this was achieved using skewed data, with ~56% 

of points belonging to just one class. Although this model does seem reliable, it only performs 

~6% better than the distribution, and without knowing the distribution of predictions, we cannot 

know if it is predicting or simply guessing. Even if recipes in the real world have this kind of 

distribution, the predictor is very limited in its decisions. 

 

5 Conclusions and Further Work 

  

In this project, we tried to see if ingredients, cooking directions, and flavor composition could be 

used  to predict recipe ratings. However, we learned that this problem is not so simple  because 

the taste of a recipe is subjective.  

 

The discussion section touches upon several results that were surprising. Here, we’ll offer some 

possible explanations. The fact that using WEIGHTS instead of EXISTENCE led to only 

comparable, if not worse results, may indicate that recipes are, after all, only guidelines. The 

weights of actual ingredients may not actually matter, as everyone has their own unique 



 

preferences with regards to food. For instance, a person may like spicy food so they may deviate 

from a recipe and elect to add more spice. Furthermore, using FREQUENCY instead of 

EXISTENCE resulted in no significant differences, which may also be due to similar reasons. In 

order to explain why using GROUPED led to only comparable, if worse results, compared to 

SPARSE and ALL may be due to the fact that there is some information lost when ingredients are 

lumped together. This might show that certain ingredients may not be as similar as they may 

seem, and that each ingredient may have slight nuances in their flavor and texture that are lost 

when we simply lump them together. Another possible explanation could be simply that our 

groups were too general, that jumping from ~800 ingredients to just ~70 categories is way too 

steep of curve. Perhaps it would be better to test using more categories. 

 

In the future, we would also like to explore more methods of featurization. One possibility is to 

look at features composed of bigrams and trigrams of ingredients. For example, “lamb and 

rosemary” might be one such bigram, and “carrots, celery, and onions” might be a trigram. We 

could also consider which bigrams and trigrams to use.  We would also like to incorporate some 

natural language processing methods in our classification and ranking scenarios. The scope of 

recipe classification could also be reduced. One of our initial concerns was that the data spanned 

across too many dishes and recipes. For instance, it would be interesting to see whether one 

could predict ratings for recipes that use chicken as their main ingredient. However, the narrower 

the focus, the harder it might be to obtain enough training and test data. After all, just how many 

ways are there to make lasagna? But if one could obtain a base learner that was decent at rating 

chicken recipes, and one that was decent at rating pasta recipes, perhaps we could combine these 

learners to create a stronger one that would be good at not only learning chicken and pasta, but 

also any crossover between the two. 
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